Changes
On October 29, 2021 at 2:14:19 PM UTC, Heiko Figgemeier:
-
Updated description of Global Synergy Cropland Map v3.0 from
"Information on global cropland distribution and agricultural production is critical for the world's agricultural monitoring and food security. We present datasets of cropland extent and agricultural production in a two-paper series of a cultivated planet in 2010. In the first part, we propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of the cropland area, which is independent of training samples. First, cropland area statistics are used to rank the input cropland maps, and then a scoring table is built to indicate the agreement among the input datasets. Secondly, statistics are allocated adaptively to the pixels with higher agreement scores until the cumulative cropland area is close to the statistics. The multilevel allocation results are then integrated to obtain the extent of cropland. We applied SASAM to produce a global cropland synergy map with a 500 m spatial resolution for circa 2010. The accuracy assessments show that the synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics. The synergy cropland map is available via an open-data repository (https://doi.org/10.7910/DVN/ZWSFAA; Lu et al., 2020). This new cropland map has been used as an essential input to the Spatial Production Allocation Model (SPAM) for producing the global dataset of agricultural production for circa 2010, which is described in the second part of the two-paper series." <br> *Global synergy cropland map: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZWSFAA*
toInformation on global cropland distribution and agricultural production is critical for the world's agricultural monitoring and food security. Here, datasets of cropland extent and agricultural production are presented. A new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution was proposed. Cropland area statistics are used to rank the input cropland maps, and then a scoring table is built to indicate the agreement among the input datasets.
f | 1 | { | f | 1 | { |
2 | "alternate_identifier": "https://doi.org/10.7910/DVN/ZWSFAA", | 2 | "alternate_identifier": "https://doi.org/10.7910/DVN/ZWSFAA", | ||
3 | "author": null, | 3 | "author": null, | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "conforms_to": "http://www.opengis.net/def/crs/EPSG/0/4326", | 5 | "conforms_to": "http://www.opengis.net/def/crs/EPSG/0/4326", | ||
6 | "contact_name": "Miao, Lu (China Academy of Agricultural Science)", | 6 | "contact_name": "Miao, Lu (China Academy of Agricultural Science)", | ||
7 | "contact_uri": "https://orcid.org/ 0000-0002-6468-4195", | 7 | "contact_uri": "https://orcid.org/ 0000-0002-6468-4195", | ||
8 | "creator_user_id": "d0125ea7-37cf-442d-9c75-1a97feb21533", | 8 | "creator_user_id": "d0125ea7-37cf-442d-9c75-1a97feb21533", | ||
9 | "documentation": | 9 | "documentation": | ||
10 | "https://essd.copernicus.org/articles/12/1913/2020/", | 10 | "https://essd.copernicus.org/articles/12/1913/2020/", | ||
11 | "groups": [], | 11 | "groups": [], | ||
12 | "id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | 12 | "id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | ||
13 | "is_part_of": "", | 13 | "is_part_of": "", | ||
14 | "is_version_of": "", | 14 | "is_version_of": "", | ||
15 | "isopen": false, | 15 | "isopen": false, | ||
16 | "license_id": "", | 16 | "license_id": "", | ||
17 | "license_title": "", | 17 | "license_title": "", | ||
18 | "maintainer": null, | 18 | "maintainer": null, | ||
19 | "maintainer_email": null, | 19 | "maintainer_email": null, | ||
20 | "metadata_created": "2021-05-16T11:13:04.124684", | 20 | "metadata_created": "2021-05-16T11:13:04.124684", | ||
n | 21 | "metadata_modified": "2021-10-26T08:25:56.009063", | n | 21 | "metadata_modified": "2021-10-29T14:14:19.110669", |
22 | "name": "cropland-extent", | 22 | "name": "cropland-extent", | ||
n | 23 | "notes": "\"Information on global cropland distribution and | n | 23 | "notes": "Information on global cropland distribution and |
24 | agricultural production is critical for the world's agricultural | 24 | agricultural production is critical for the world's agricultural | ||
t | 25 | monitoring and food security. We present datasets of cropland extent | t | 25 | monitoring and food security. Here, datasets of cropland extent and |
26 | and agricultural production in a two-paper series of a cultivated | 26 | agricultural production are presented. A new Self-adapting Statistics | ||
27 | planet in 2010. In the first part, we propose a new Self-adapting | ||||
28 | Statistics Allocation Model (SASAM) to develop the global map of | 27 | Allocation Model (SASAM) to develop the global map of cropland | ||
29 | cropland distribution. SASAM is based on the fusion of multiple | 28 | distribution was proposed. Cropland area statistics are used to rank | ||
30 | existing cropland maps and multilevel statistics of the cropland area, | 29 | the input cropland maps, and then a scoring table is built to indicate | ||
31 | which is independent of training samples. First, cropland area | 30 | the agreement among the input datasets.", | ||
32 | statistics are used to rank the input cropland maps, and then a | ||||
33 | scoring table is built to indicate the agreement among the input | ||||
34 | datasets. Secondly, statistics are allocated adaptively to the pixels | ||||
35 | with higher agreement scores until the cumulative cropland area is | ||||
36 | close to the statistics. The multilevel allocation results are then | ||||
37 | integrated to obtain the extent of cropland. We applied SASAM to | ||||
38 | produce a global cropland synergy map with a 500 m spatial resolution | ||||
39 | for circa 2010. The accuracy assessments show that the synergy map has | ||||
40 | higher accuracy than the input datasets and better consistency with | ||||
41 | the cropland statistics. The synergy cropland map is available via an | ||||
42 | open-data repository (https://doi.org/10.7910/DVN/ZWSFAA; Lu et al., | ||||
43 | 2020). This new cropland map has been used as an essential input to | ||||
44 | the Spatial Production Allocation Model (SPAM) for producing the | ||||
45 | global dataset of agricultural production for circa 2010, which is | ||||
46 | described in the second part of the two-paper series.\" <br> | ||||
47 | \r\n*Global synergy cropland map: | ||||
48 | verse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZWSFAA*", | ||||
49 | "num_resources": 3, | 31 | "num_resources": 3, | ||
50 | "num_tags": 4, | 32 | "num_tags": 4, | ||
51 | "organization": { | 33 | "organization": { | ||
52 | "approval_status": "approved", | 34 | "approval_status": "approved", | ||
53 | "created": "2021-01-08T11:55:37.205088", | 35 | "created": "2021-01-08T11:55:37.205088", | ||
54 | "description": "", | 36 | "description": "", | ||
55 | "id": "594a3901-9ffa-4e91-b828-84f89554ab4c", | 37 | "id": "594a3901-9ffa-4e91-b828-84f89554ab4c", | ||
56 | "image_url": | 38 | "image_url": | ||
57 | "https://tu-dresden.de/++theme++tud.theme.webcms2/img/tud-logo.svg", | 39 | "https://tu-dresden.de/++theme++tud.theme.webcms2/img/tud-logo.svg", | ||
58 | "is_organization": true, | 40 | "is_organization": true, | ||
59 | "name": "tud", | 41 | "name": "tud", | ||
60 | "state": "active", | 42 | "state": "active", | ||
61 | "title": "TUD", | 43 | "title": "TUD", | ||
62 | "type": "organization" | 44 | "type": "organization" | ||
63 | }, | 45 | }, | ||
64 | "owner_org": "594a3901-9ffa-4e91-b828-84f89554ab4c", | 46 | "owner_org": "594a3901-9ffa-4e91-b828-84f89554ab4c", | ||
65 | "private": false, | 47 | "private": false, | ||
66 | "quality_metrics": | 48 | "quality_metrics": | ||
67 | AttributeAccuracyasRootMeanSquareErrorRMSE\":{\"label\":\"Quantitative | 49 | AttributeAccuracyasRootMeanSquareErrorRMSE\":{\"label\":\"Quantitative | ||
68 | Attribute Accuracy as Root Mean Square Error | 50 | Attribute Accuracy as Root Mean Square Error | ||
69 | (RMSE)\",\"values\":{\"value of quality metric\":\"34100\",\"ground | 51 | (RMSE)\",\"values\":{\"value of quality metric\":\"34100\",\"ground | ||
70 | truth dataset\":\"FAO statistic\",\"confidence | 52 | truth dataset\":\"FAO statistic\",\"confidence | ||
71 | term\":\"\",\"confidence value\":\"\",\"thematic | 53 | term\":\"\",\"confidence value\":\"\",\"thematic | ||
72 | representativity\":\"\",\"spatial | 54 | representativity\":\"\",\"spatial | ||
73 | representativity\":\"Global\",\"temporal | 55 | representativity\":\"Global\",\"temporal | ||
74 | representativity\":\"\",\"name of quality source\":\"A cultivated | 56 | representativity\":\"\",\"name of quality source\":\"A cultivated | ||
75 | planet in 2010 \u2013 Part 1: The global synergy cropland map\",\"type | 57 | planet in 2010 \u2013 Part 1: The global synergy cropland map\",\"type | ||
76 | of quality source\":\"publication\",\"link to quality | 58 | of quality source\":\"publication\",\"link to quality | ||
77 | ributeAccuracyasCoefficientofDetermination\":{\"label\":\"Quantitative | 59 | ributeAccuracyasCoefficientofDetermination\":{\"label\":\"Quantitative | ||
78 | Attribute Accuracy as Coefficient of Determination | 60 | Attribute Accuracy as Coefficient of Determination | ||
79 | (R\u00b2)\",\"values\":{\"value of quality | 61 | (R\u00b2)\",\"values\":{\"value of quality | ||
80 | metric\":\"0.9801\",\"ground truth dataset\":\"FAO | 62 | metric\":\"0.9801\",\"ground truth dataset\":\"FAO | ||
81 | statistic\",\"confidence term\":\"\",\"confidence | 63 | statistic\",\"confidence term\":\"\",\"confidence | ||
82 | value\":\"\",\"thematic representativity\":\"\",\"spatial | 64 | value\":\"\",\"thematic representativity\":\"\",\"spatial | ||
83 | representativity\":\"Global\",\"temporal | 65 | representativity\":\"Global\",\"temporal | ||
84 | representativity\":\"\",\"name of quality source\":\"A cultivated | 66 | representativity\":\"\",\"name of quality source\":\"A cultivated | ||
85 | planet in 2010 \u2013 Part 1: The global synergy cropland map\",\"type | 67 | planet in 2010 \u2013 Part 1: The global synergy cropland map\",\"type | ||
86 | of quality source\":\"publication\",\"link to quality | 68 | of quality source\":\"publication\",\"link to quality | ||
87 | source\":\"https://essd.copernicus.org/articles/12/1913/2020/\"}}}", | 69 | source\":\"https://essd.copernicus.org/articles/12/1913/2020/\"}}}", | ||
88 | "relationships_as_object": [], | 70 | "relationships_as_object": [], | ||
89 | "relationships_as_subject": [], | 71 | "relationships_as_subject": [], | ||
90 | "resources": [ | 72 | "resources": [ | ||
91 | { | 73 | { | ||
92 | "cache_last_updated": null, | 74 | "cache_last_updated": null, | ||
93 | "cache_url": null, | 75 | "cache_url": null, | ||
94 | "created": "2021-10-26T08:16:43.363833", | 76 | "created": "2021-10-26T08:16:43.363833", | ||
95 | "datastore_active": false, | 77 | "datastore_active": false, | ||
96 | "description": "", | 78 | "description": "", | ||
97 | "format": "GeoTiff", | 79 | "format": "GeoTiff", | ||
98 | "hash": "", | 80 | "hash": "", | ||
99 | "id": "3131dc1f-ed5e-4a36-bf5c-82880e635de7", | 81 | "id": "3131dc1f-ed5e-4a36-bf5c-82880e635de7", | ||
100 | "last_modified": "2021-10-26T08:16:43.299545", | 82 | "last_modified": "2021-10-26T08:16:43.299545", | ||
101 | "license": | 83 | "license": | ||
102 | "https://creativecommons.org/share-your-work/public-domain/cc0", | 84 | "https://creativecommons.org/share-your-work/public-domain/cc0", | ||
103 | "metadata_modified": "2021-10-26T08:17:58.324556", | 85 | "metadata_modified": "2021-10-26T08:17:58.324556", | ||
104 | "mimetype": "image/tiff", | 86 | "mimetype": "image/tiff", | ||
105 | "mimetype_inner": null, | 87 | "mimetype_inner": null, | ||
106 | "name": "global-cropland-confidence.tif", | 88 | "name": "global-cropland-confidence.tif", | ||
107 | "package_id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | 89 | "package_id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | ||
108 | "position": 0, | 90 | "position": 0, | ||
109 | "resource_type": null, | 91 | "resource_type": null, | ||
110 | "size": 151345031, | 92 | "size": 151345031, | ||
111 | "state": "active", | 93 | "state": "active", | ||
112 | "url": | 94 | "url": | ||
113 | -ed5e-4a36-bf5c-82880e635de7/download/global-cropland-confidence.tif", | 95 | -ed5e-4a36-bf5c-82880e635de7/download/global-cropland-confidence.tif", | ||
114 | "url_type": "upload" | 96 | "url_type": "upload" | ||
115 | }, | 97 | }, | ||
116 | { | 98 | { | ||
117 | "cache_last_updated": null, | 99 | "cache_last_updated": null, | ||
118 | "cache_url": null, | 100 | "cache_url": null, | ||
119 | "created": "2021-10-26T08:17:58.340732", | 101 | "created": "2021-10-26T08:17:58.340732", | ||
120 | "datastore_active": false, | 102 | "datastore_active": false, | ||
121 | "description": "", | 103 | "description": "", | ||
122 | "format": "GeoTiff", | 104 | "format": "GeoTiff", | ||
123 | "hash": "", | 105 | "hash": "", | ||
124 | "id": "5d891b1b-808b-441b-b70a-79ae3593885c", | 106 | "id": "5d891b1b-808b-441b-b70a-79ae3593885c", | ||
125 | "last_modified": "2021-10-26T08:17:58.295002", | 107 | "last_modified": "2021-10-26T08:17:58.295002", | ||
126 | "license": | 108 | "license": | ||
127 | "https://creativecommons.org/share-your-work/public-domain/cc0", | 109 | "https://creativecommons.org/share-your-work/public-domain/cc0", | ||
128 | "metadata_modified": "2021-10-26T08:25:56.025023", | 110 | "metadata_modified": "2021-10-26T08:25:56.025023", | ||
129 | "mimetype": "image/tiff", | 111 | "mimetype": "image/tiff", | ||
130 | "mimetype_inner": null, | 112 | "mimetype_inner": null, | ||
131 | "name": "global-cropland-percentage-map.tif", | 113 | "name": "global-cropland-percentage-map.tif", | ||
132 | "package_id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | 114 | "package_id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | ||
133 | "position": 1, | 115 | "position": 1, | ||
134 | "resource_type": null, | 116 | "resource_type": null, | ||
135 | "size": 379528031, | 117 | "size": 379528031, | ||
136 | "state": "active", | 118 | "state": "active", | ||
137 | "url": | 119 | "url": | ||
138 | b-441b-b70a-79ae3593885c/download/global-cropland-percentage-map.tif", | 120 | b-441b-b70a-79ae3593885c/download/global-cropland-percentage-map.tif", | ||
139 | "url_type": "upload" | 121 | "url_type": "upload" | ||
140 | }, | 122 | }, | ||
141 | { | 123 | { | ||
142 | "cache_last_updated": null, | 124 | "cache_last_updated": null, | ||
143 | "cache_url": null, | 125 | "cache_url": null, | ||
144 | "created": "2021-10-26T08:25:56.063717", | 126 | "created": "2021-10-26T08:25:56.063717", | ||
145 | "datastore_active": false, | 127 | "datastore_active": false, | ||
146 | "description": "This file contains the geoinformation of | 128 | "description": "This file contains the geoinformation of | ||
147 | \"Global-cropland-percentage-map.tif\" and | 129 | \"Global-cropland-percentage-map.tif\" and | ||
148 | \"Global-cropland-confidence.tif, the file | 130 | \"Global-cropland-confidence.tif, the file | ||
149 | \"Global-cropland-Geoinformation.tfw\" is also necessary to download", | 131 | \"Global-cropland-Geoinformation.tfw\" is also necessary to download", | ||
150 | "format": "tfw", | 132 | "format": "tfw", | ||
151 | "hash": "", | 133 | "hash": "", | ||
152 | "id": "3e1fcb41-e623-4495-a486-b5f7504e0355", | 134 | "id": "3e1fcb41-e623-4495-a486-b5f7504e0355", | ||
153 | "last_modified": "2021-10-26T08:25:55.967045", | 135 | "last_modified": "2021-10-26T08:25:55.967045", | ||
154 | "license": | 136 | "license": | ||
155 | "https://creativecommons.org/share-your-work/public-domain/cc0", | 137 | "https://creativecommons.org/share-your-work/public-domain/cc0", | ||
156 | "metadata_modified": "2021-10-26T08:25:56.026153", | 138 | "metadata_modified": "2021-10-26T08:25:56.026153", | ||
157 | "mimetype": null, | 139 | "mimetype": null, | ||
158 | "mimetype_inner": null, | 140 | "mimetype_inner": null, | ||
159 | "name": "global-cropland-geoinformation.tfw", | 141 | "name": "global-cropland-geoinformation.tfw", | ||
160 | "package_id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | 142 | "package_id": "3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | ||
161 | "position": 2, | 143 | "position": 2, | ||
162 | "resource_type": null, | 144 | "resource_type": null, | ||
163 | "size": 83, | 145 | "size": 83, | ||
164 | "state": "active", | 146 | "state": "active", | ||
165 | "url": | 147 | "url": | ||
166 | 3-4495-a486-b5f7504e0355/download/global-cropland-geoinformation.tfw", | 148 | 3-4495-a486-b5f7504e0355/download/global-cropland-geoinformation.tfw", | ||
167 | "url_type": "upload" | 149 | "url_type": "upload" | ||
168 | } | 150 | } | ||
169 | ], | 151 | ], | ||
170 | "spatial": | 152 | "spatial": | ||
171 | 5.9791679507000026],[-173.1125000000000114,-55.9791679507000026]]]]}", | 153 | 5.9791679507000026],[-173.1125000000000114,-55.9791679507000026]]]]}", | ||
172 | "spatial_resolution": "0.0041667", | 154 | "spatial_resolution": "0.0041667", | ||
173 | "spatial_resolution_type": "angular", | 155 | "spatial_resolution_type": "angular", | ||
174 | "state": "active", | 156 | "state": "active", | ||
175 | "tags": [ | 157 | "tags": [ | ||
176 | { | 158 | { | ||
177 | "display_name": "cropland", | 159 | "display_name": "cropland", | ||
178 | "id": "f6b64d91-1c2c-4a83-9be1-766613d73f35", | 160 | "id": "f6b64d91-1c2c-4a83-9be1-766613d73f35", | ||
179 | "name": "cropland", | 161 | "name": "cropland", | ||
180 | "state": "active", | 162 | "state": "active", | ||
181 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
182 | }, | 164 | }, | ||
183 | { | 165 | { | ||
184 | "display_name": "remote sensing", | 166 | "display_name": "remote sensing", | ||
185 | "id": "66d4038e-fee4-4769-bfa6-3f4c1552c22f", | 167 | "id": "66d4038e-fee4-4769-bfa6-3f4c1552c22f", | ||
186 | "name": "remote sensing", | 168 | "name": "remote sensing", | ||
187 | "state": "active", | 169 | "state": "active", | ||
188 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
189 | }, | 171 | }, | ||
190 | { | 172 | { | ||
191 | "display_name": "sensing", | 173 | "display_name": "sensing", | ||
192 | "id": "c7f21b3d-d2e3-4f8a-af96-d53df064251b", | 174 | "id": "c7f21b3d-d2e3-4f8a-af96-d53df064251b", | ||
193 | "name": "sensing", | 175 | "name": "sensing", | ||
194 | "state": "active", | 176 | "state": "active", | ||
195 | "vocabulary_id": null | 177 | "vocabulary_id": null | ||
196 | }, | 178 | }, | ||
197 | { | 179 | { | ||
198 | "display_name": "spatial distribution", | 180 | "display_name": "spatial distribution", | ||
199 | "id": "3118b9cc-5a3c-4023-af6b-4cd527b19c15", | 181 | "id": "3118b9cc-5a3c-4023-af6b-4cd527b19c15", | ||
200 | "name": "spatial distribution", | 182 | "name": "spatial distribution", | ||
201 | "state": "active", | 183 | "state": "active", | ||
202 | "vocabulary_id": null | 184 | "vocabulary_id": null | ||
203 | } | 185 | } | ||
204 | ], | 186 | ], | ||
205 | "temporal_end": "2010-12-31", | 187 | "temporal_end": "2010-12-31", | ||
206 | "temporal_resolution": "", | 188 | "temporal_resolution": "", | ||
207 | "temporal_start": "2010-01-01", | 189 | "temporal_start": "2010-01-01", | ||
208 | "theme": "http://inspire.ec.europa.eu/theme/af, | 190 | "theme": "http://inspire.ec.europa.eu/theme/af, | ||
209 | http://inspire.ec.europa.eu/theme/lc, | 191 | http://inspire.ec.europa.eu/theme/lc, | ||
210 | http://inspire.ec.europa.eu/theme/lu, | 192 | http://inspire.ec.europa.eu/theme/lu, | ||
211 | http://inspire.ec.europa.eu/theme/su", | 193 | http://inspire.ec.europa.eu/theme/su", | ||
212 | "title": "Global Synergy Cropland Map v3.0", | 194 | "title": "Global Synergy Cropland Map v3.0", | ||
213 | "type": "dataset", | 195 | "type": "dataset", | ||
214 | "uri": | 196 | "uri": | ||
215 | r-dmp.geo.tu-dresden.de/dataset/3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | 197 | r-dmp.geo.tu-dresden.de/dataset/3b638557-27c7-4cc1-a95d-cc1c579e4ae1", | ||
216 | "url": | 198 | "url": | ||
217 | /DVN/ZWSFAA;\u00a0https://essd.copernicus.org/articles/12/1913/2020/", | 199 | /DVN/ZWSFAA;\u00a0https://essd.copernicus.org/articles/12/1913/2020/", | ||
218 | "version": null, | 200 | "version": null, | ||
219 | "was_derived_from": "" | 201 | "was_derived_from": "" | ||
220 | } | 202 | } |