Changes
On October 29, 2021 at 1:47:07 PM UTC, Heiko Figgemeier:
-
Updated description of GAEZ Global Agro-ecological Zones v3.0 from
"The Agro‐Ecological Zones (AEZ) approach is based on principles of land evaluation (FAO 1976, 1984 and 2007). The AEZ concept was originally developed by the Food and Agriculture organization of the United Nations (FAO). FAO, with the collaboration of IIASA has over time, further developed and applied the AEZ methodology, supporting databases and software packages. The current Global AEZ (GAEZ v 3.0) provides a major update of data and extension of the methodology compared to the release of GAEZ in 2002 (Fischer, et. al., 2002). GAEZ v 3.0 incorporates two important new global data sets on “Actual Yield and Production’ and “Yield and Production Gaps” between potentials and actual yield and production. Geo‐referenced global climate, soil and terrain data are combined into a land resources database, commonly assembled on the basis of global grids, typically at 5 arc‐minute and 30 arc‐second resolutions. Climatic data comprises precipitation, temperature, wind speed, sunshine hours and relative humidity, which are used to compile agronomically meaningful climate resources inventories including quantified thermal and moisture regimes in space and time." <br> *Fischer, G.; Nachtergaele, F. O.; Prieler, S.; Teixeira, E.; Toth, G.; van Velthuizen, H. et al. (2016): Global Agro-ecological Zones (GAEZ v3.0) - Model Documentation.*
toGAEZ v 3.0 incorporates two important new global data sets on “Actual Yield and Production’ and “Yield and Production Gaps” between potentials and actual yield and production. Geo‐referenced global climate, soil and terrain data are combined into a land resources database, commonly assembled on the basis of global grids, typically at 5 arc‐minute and 30 arc‐second resolutions. Climatic data comprises precipitation, temperature, wind speed, sunshine hours and relative humidity, which are used to compile agronomically meaningful climate resources inventories including quantified thermal and moisture regimes in space and time.
f | 1 | { | f | 1 | { |
2 | "author": null, | 2 | "author": null, | ||
3 | "author_email": null, | 3 | "author_email": null, | ||
4 | "conforms_to": "http://www.opengis.net/def/crs/EPSG/0/4326", | 4 | "conforms_to": "http://www.opengis.net/def/crs/EPSG/0/4326", | ||
5 | "contact_name": "Food and Agriculture Organization of the United | 5 | "contact_name": "Food and Agriculture Organization of the United | ||
6 | Nations (FAO)", | 6 | Nations (FAO)", | ||
7 | "creator_user_id": "f96ad893-f291-40eb-b0f3-5bef533dcc1e", | 7 | "creator_user_id": "f96ad893-f291-40eb-b0f3-5bef533dcc1e", | ||
8 | "documentation": | 8 | "documentation": | ||
9 | .iiasa.ac.at/Research/LUC/GAEZv3.0/docs/GAEZ_Model_Documentation.pdf", | 9 | .iiasa.ac.at/Research/LUC/GAEZv3.0/docs/GAEZ_Model_Documentation.pdf", | ||
10 | "groups": [], | 10 | "groups": [], | ||
11 | "id": "26d153ba-70d4-4c4a-a1a9-988a9086a370", | 11 | "id": "26d153ba-70d4-4c4a-a1a9-988a9086a370", | ||
12 | "is_part_of": "", | 12 | "is_part_of": "", | ||
13 | "is_version_of": "", | 13 | "is_version_of": "", | ||
14 | "isopen": false, | 14 | "isopen": false, | ||
15 | "license_id": "", | 15 | "license_id": "", | ||
16 | "license_title": "", | 16 | "license_title": "", | ||
17 | "maintainer": null, | 17 | "maintainer": null, | ||
18 | "maintainer_email": null, | 18 | "maintainer_email": null, | ||
19 | "metadata_created": "2021-04-30T13:59:40.610111", | 19 | "metadata_created": "2021-04-30T13:59:40.610111", | ||
n | 20 | "metadata_modified": "2021-10-26T09:04:34.226471", | n | 20 | "metadata_modified": "2021-10-29T13:47:07.109067", |
21 | "name": "potyield", | 21 | "name": "potyield", | ||
n | 22 | "notes": "\"The Agro\u2010Ecological Zones (AEZ) approach is based | n | ||
23 | on principles of land evaluation (FAO 1976, 1984 and 2007). The AEZ | ||||
24 | concept was originally developed by the Food and Agriculture | ||||
25 | organization of the United Nations (FAO). FAO, with the collaboration | ||||
26 | of IIASA has over time, further developed and applied the AEZ | ||||
27 | methodology, supporting databases and software packages. The current | ||||
28 | Global AEZ (GAEZ v 3.0) provides a major update of data and extension | ||||
29 | of the methodology compared to the release of GAEZ in 2002 (Fischer, | ||||
30 | et. al., 2002). GAEZ v 3.0 incorporates two important new global data | 22 | "notes": "GAEZ v 3.0 incorporates two important new global data sets | ||
31 | sets on \u201cActual Yield and Production\u2019 and \u201cYield and | 23 | on \u201cActual Yield and Production\u2019 and \u201cYield and | ||
32 | Production Gaps\u201d between potentials and actual yield and | 24 | Production Gaps\u201d between potentials and actual yield and | ||
33 | production. Geo\u2010referenced global climate, soil and terrain data | 25 | production. Geo\u2010referenced global climate, soil and terrain data | ||
34 | are combined into a land resources database, commonly assembled on the | 26 | are combined into a land resources database, commonly assembled on the | ||
35 | basis of global grids, typically at 5 arc\u2010minute and 30 | 27 | basis of global grids, typically at 5 arc\u2010minute and 30 | ||
36 | arc\u2010second resolutions. Climatic data comprises precipitation, | 28 | arc\u2010second resolutions. Climatic data comprises precipitation, | ||
37 | temperature, wind speed, sunshine hours and relative humidity, which | 29 | temperature, wind speed, sunshine hours and relative humidity, which | ||
38 | are used to compile agronomically meaningful climate resources | 30 | are used to compile agronomically meaningful climate resources | ||
39 | inventories including quantified thermal and moisture regimes in space | 31 | inventories including quantified thermal and moisture regimes in space | ||
t | 40 | and time.\" <br> \r\n*Fischer, G.; Nachtergaele, F. O.; Prieler, S.; | t | 32 | and time.", |
41 | Teixeira, E.; Toth, G.; van Velthuizen, H. et al. (2016): Global | ||||
42 | Agro-ecological Zones (GAEZ v3.0) - Model Documentation.*\r\n", | ||||
43 | "num_resources": 1, | 33 | "num_resources": 1, | ||
44 | "num_tags": 2, | 34 | "num_tags": 2, | ||
45 | "organization": { | 35 | "organization": { | ||
46 | "approval_status": "approved", | 36 | "approval_status": "approved", | ||
47 | "created": "2021-01-08T11:55:37.205088", | 37 | "created": "2021-01-08T11:55:37.205088", | ||
48 | "description": "", | 38 | "description": "", | ||
49 | "id": "594a3901-9ffa-4e91-b828-84f89554ab4c", | 39 | "id": "594a3901-9ffa-4e91-b828-84f89554ab4c", | ||
50 | "image_url": | 40 | "image_url": | ||
51 | "https://tu-dresden.de/++theme++tud.theme.webcms2/img/tud-logo.svg", | 41 | "https://tu-dresden.de/++theme++tud.theme.webcms2/img/tud-logo.svg", | ||
52 | "is_organization": true, | 42 | "is_organization": true, | ||
53 | "name": "tud", | 43 | "name": "tud", | ||
54 | "state": "active", | 44 | "state": "active", | ||
55 | "title": "TUD", | 45 | "title": "TUD", | ||
56 | "type": "organization" | 46 | "type": "organization" | ||
57 | }, | 47 | }, | ||
58 | "owner_org": "594a3901-9ffa-4e91-b828-84f89554ab4c", | 48 | "owner_org": "594a3901-9ffa-4e91-b828-84f89554ab4c", | ||
59 | "private": false, | 49 | "private": false, | ||
60 | "quality_metrics": | 50 | "quality_metrics": | ||
61 | ompletenessOmmissionAsNumberOfMissingItems\":{\"label\":\"Completeness | 51 | ompletenessOmmissionAsNumberOfMissingItems\":{\"label\":\"Completeness | ||
62 | Ommission as Number of Missing Items\",\"values\":{\"value of quality | 52 | Ommission as Number of Missing Items\",\"values\":{\"value of quality | ||
63 | metric\":\"8713437\",\"ground truth dataset\":\"\",\"confidence | 53 | metric\":\"8713437\",\"ground truth dataset\":\"\",\"confidence | ||
64 | term\":\"\",\"confidence value\":\"\",\"thematic | 54 | term\":\"\",\"confidence value\":\"\",\"thematic | ||
65 | representativity\":\"\",\"spatial | 55 | representativity\":\"\",\"spatial | ||
66 | representativity\":\"global\",\"temporal | 56 | representativity\":\"global\",\"temporal | ||
67 | representativity\":\"\",\"name of quality | 57 | representativity\":\"\",\"name of quality | ||
68 | source\":\"MetadataFromGeodata Extraction Tool\",\"type of quality | 58 | source\":\"MetadataFromGeodata Extraction Tool\",\"type of quality | ||
69 | source\":\"software\",\"link to quality | 59 | source\":\"software\",\"link to quality | ||
70 | #completenessOmmissionAsRateOfMissingItems\":{\"label\":\"Completeness | 60 | #completenessOmmissionAsRateOfMissingItems\":{\"label\":\"Completeness | ||
71 | Ommission as Rate of Missing Items\",\"values\":{\"value of quality | 61 | Ommission as Rate of Missing Items\",\"values\":{\"value of quality | ||
72 | metric\":\"96.8074\",\"ground truth dataset\":\"\",\"confidence | 62 | metric\":\"96.8074\",\"ground truth dataset\":\"\",\"confidence | ||
73 | term\":\"\",\"confidence value\":\"\",\"thematic | 63 | term\":\"\",\"confidence value\":\"\",\"thematic | ||
74 | representativity\":\"\",\"spatial | 64 | representativity\":\"\",\"spatial | ||
75 | representativity\":\"global\",\"temporal | 65 | representativity\":\"global\",\"temporal | ||
76 | representativity\":\"\",\"name of quality | 66 | representativity\":\"\",\"name of quality | ||
77 | source\":\"MetadataFromGeodata Extraction Tool\",\"type of quality | 67 | source\":\"MetadataFromGeodata Extraction Tool\",\"type of quality | ||
78 | source\":\"software\",\"link to quality | 68 | source\":\"software\",\"link to quality | ||
79 | nsistencyAsValuePhysicalStructureConflictsNumber\":{\"label\":\"Format | 69 | nsistencyAsValuePhysicalStructureConflictsNumber\":{\"label\":\"Format | ||
80 | Consistency as Value Physical Structure Conflicts | 70 | Consistency as Value Physical Structure Conflicts | ||
81 | Number\",\"values\":{\"value of quality metric\":\"true\",\"ground | 71 | Number\",\"values\":{\"value of quality metric\":\"true\",\"ground | ||
82 | truth dataset\":\"\",\"confidence term\":\"\",\"confidence | 72 | truth dataset\":\"\",\"confidence term\":\"\",\"confidence | ||
83 | value\":\"\",\"thematic representativity\":\"\",\"spatial | 73 | value\":\"\",\"thematic representativity\":\"\",\"spatial | ||
84 | representativity\":\"\",\"temporal representativity\":\"\",\"name of | 74 | representativity\":\"\",\"temporal representativity\":\"\",\"name of | ||
85 | quality source\":\"MetadataFromGeodata Extraction Tool\",\"type of | 75 | quality source\":\"MetadataFromGeodata Extraction Tool\",\"type of | ||
86 | quality source\":\"software\",\"link to quality | 76 | quality source\":\"software\",\"link to quality | ||
87 | es/quality-elements#temporalConsistencyAsValue\":{\"label\":\"Temporal | 77 | es/quality-elements#temporalConsistencyAsValue\":{\"label\":\"Temporal | ||
88 | Consistency as Value\",\"values\":{\"value of quality | 78 | Consistency as Value\",\"values\":{\"value of quality | ||
89 | metric\":\"false\",\"ground truth dataset\":\"\",\"confidence | 79 | metric\":\"false\",\"ground truth dataset\":\"\",\"confidence | ||
90 | term\":\"\",\"confidence value\":\"\",\"thematic | 80 | term\":\"\",\"confidence value\":\"\",\"thematic | ||
91 | representativity\":\"\",\"spatial representativity\":\"\",\"temporal | 81 | representativity\":\"\",\"spatial representativity\":\"\",\"temporal | ||
92 | representativity\":\"\",\"name of quality source\":\"\",\"type of | 82 | representativity\":\"\",\"name of quality source\":\"\",\"type of | ||
93 | quality source\":\"manual analysis\",\"link to quality | 83 | quality source\":\"manual analysis\",\"link to quality | ||
94 | ributeAccuracyasCoefficientofDetermination\":{\"label\":\"Quantitative | 84 | ributeAccuracyasCoefficientofDetermination\":{\"label\":\"Quantitative | ||
95 | Attribute Accuracy as Coefficient of Determination | 85 | Attribute Accuracy as Coefficient of Determination | ||
96 | (R\u00b2)\",\"values\":{\"value of quality metric\":\"0.75\",\"ground | 86 | (R\u00b2)\",\"values\":{\"value of quality metric\":\"0.75\",\"ground | ||
97 | truth dataset\":\"\",\"confidence term\":\"\",\"confidence | 87 | truth dataset\":\"\",\"confidence term\":\"\",\"confidence | ||
98 | value\":\"\",\"thematic representativity\":\"\",\"spatial | 88 | value\":\"\",\"thematic representativity\":\"\",\"spatial | ||
99 | representativity\":\"global\",\"temporal | 89 | representativity\":\"global\",\"temporal | ||
100 | representativity\":\"\",\"name of quality source\":\"Spatio-Temporal | 90 | representativity\":\"\",\"name of quality source\":\"Spatio-Temporal | ||
101 | Dynamics of Maize Potential Yield and Yield Gaps in Northeast China | 91 | Dynamics of Maize Potential Yield and Yield Gaps in Northeast China | ||
102 | from 1990 to 2015\",\"type of quality source\":\"publication\",\"link | 92 | from 1990 to 2015\",\"type of quality source\":\"publication\",\"link | ||
103 | to quality | 93 | to quality | ||
104 | ource\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480490/\"}}}", | 94 | ource\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480490/\"}}}", | ||
105 | "relationships_as_object": [], | 95 | "relationships_as_object": [], | ||
106 | "relationships_as_subject": [], | 96 | "relationships_as_subject": [], | ||
107 | "resources": [ | 97 | "resources": [ | ||
108 | { | 98 | { | ||
109 | "cache_last_updated": null, | 99 | "cache_last_updated": null, | ||
110 | "cache_url": null, | 100 | "cache_url": null, | ||
111 | "created": "2021-10-26T09:04:34.249965", | 101 | "created": "2021-10-26T09:04:34.249965", | ||
112 | "datastore_active": false, | 102 | "datastore_active": false, | ||
113 | "description": "", | 103 | "description": "", | ||
114 | "format": "geotiff", | 104 | "format": "geotiff", | ||
115 | "hash": "", | 105 | "hash": "", | ||
116 | "id": "4708039e-8bd8-4675-8623-ecd4b94d1b4b", | 106 | "id": "4708039e-8bd8-4675-8623-ecd4b94d1b4b", | ||
117 | "last_modified": null, | 107 | "last_modified": null, | ||
118 | "license": | 108 | "license": | ||
119 | ebarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/docs/GAEZ_User_Guide.pdf", | 109 | ebarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/docs/GAEZ_User_Guide.pdf", | ||
120 | "metadata_modified": "2021-10-26T09:04:34.236730", | 110 | "metadata_modified": "2021-10-26T09:04:34.236730", | ||
121 | "mimetype": null, | 111 | "mimetype": null, | ||
122 | "mimetype_inner": null, | 112 | "mimetype_inner": null, | ||
123 | "name": | 113 | "name": | ||
124 | /w/ctrl?_flow=Vwr&_view=Welcome&idAS=0&idFS=0&fieldmain=main_&idPS=0", | 114 | /w/ctrl?_flow=Vwr&_view=Welcome&idAS=0&idFS=0&fieldmain=main_&idPS=0", | ||
125 | "package_id": "26d153ba-70d4-4c4a-a1a9-988a9086a370", | 115 | "package_id": "26d153ba-70d4-4c4a-a1a9-988a9086a370", | ||
126 | "position": 0, | 116 | "position": 0, | ||
127 | "resource_type": null, | 117 | "resource_type": null, | ||
128 | "size": null, | 118 | "size": null, | ||
129 | "state": "active", | 119 | "state": "active", | ||
130 | "url": | 120 | "url": | ||
131 | /w/ctrl?_flow=Vwr&_view=Welcome&idAS=0&idFS=0&fieldmain=main_&idPS=0", | 121 | /w/ctrl?_flow=Vwr&_view=Welcome&idAS=0&idFS=0&fieldmain=main_&idPS=0", | ||
132 | "url_type": null | 122 | "url_type": null | ||
133 | } | 123 | } | ||
134 | ], | 124 | ], | ||
135 | "spatial": | 125 | "spatial": | ||
136 | 7],[188.4375,-85.05112877980659],[-170.15625,-85.05112877980659]]]]}", | 126 | 7],[188.4375,-85.05112877980659],[-170.15625,-85.05112877980659]]]]}", | ||
137 | "spatial_resolution": "0.08333", | 127 | "spatial_resolution": "0.08333", | ||
138 | "spatial_resolution_type": "angular", | 128 | "spatial_resolution_type": "angular", | ||
139 | "state": "active", | 129 | "state": "active", | ||
140 | "tags": [ | 130 | "tags": [ | ||
141 | { | 131 | { | ||
142 | "display_name": "Agriculture", | 132 | "display_name": "Agriculture", | ||
143 | "id": "089ec053-0d26-4c21-becd-40b02c26f0c0", | 133 | "id": "089ec053-0d26-4c21-becd-40b02c26f0c0", | ||
144 | "name": "Agriculture", | 134 | "name": "Agriculture", | ||
145 | "state": "active", | 135 | "state": "active", | ||
146 | "vocabulary_id": null | 136 | "vocabulary_id": null | ||
147 | }, | 137 | }, | ||
148 | { | 138 | { | ||
149 | "display_name": "Ecology", | 139 | "display_name": "Ecology", | ||
150 | "id": "eeca70af-a1af-4503-a8f0-c0cba6abd056", | 140 | "id": "eeca70af-a1af-4503-a8f0-c0cba6abd056", | ||
151 | "name": "Ecology", | 141 | "name": "Ecology", | ||
152 | "state": "active", | 142 | "state": "active", | ||
153 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
154 | } | 144 | } | ||
155 | ], | 145 | ], | ||
156 | "temporal_end": "2000-01-01", | 146 | "temporal_end": "2000-01-01", | ||
157 | "temporal_resolution": "", | 147 | "temporal_resolution": "", | ||
158 | "temporal_start": "1961-01-01", | 148 | "temporal_start": "1961-01-01", | ||
159 | "theme": "https://inspire.ec.europa.eu/theme/af", | 149 | "theme": "https://inspire.ec.europa.eu/theme/af", | ||
160 | "title": "GAEZ Global Agro-ecological Zones v3.0", | 150 | "title": "GAEZ Global Agro-ecological Zones v3.0", | ||
161 | "type": "dataset", | 151 | "type": "dataset", | ||
162 | "uri": | 152 | "uri": | ||
163 | r-dmp.geo.tu-dresden.de/dataset/26d153ba-70d4-4c4a-a1a9-988a9086a370", | 153 | r-dmp.geo.tu-dresden.de/dataset/26d153ba-70d4-4c4a-a1a9-988a9086a370", | ||
164 | "url": "https://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/, | 154 | "url": "https://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/, | ||
165 | ebarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/docs/GAEZ_User_Guide.pdf", | 155 | ebarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/docs/GAEZ_User_Guide.pdf", | ||
166 | "version": null, | 156 | "version": null, | ||
167 | "was_derived_from": "" | 157 | "was_derived_from": "" | ||
168 | } | 158 | } |